
FINAL REPORT to the NASA/Goddard Space Flight Center

Grant Number: NAGS..3156 /C_//, t: <=

i

PROJECT COMPLETION DATE: December 14, 1996 _, 'fT-

PROJECT TITLE: Applied Research Study

PRINCIPAL INVESTIGATOR: Ronald J. Leach

Department of Systems & Computer Science
College of Engineering, Architecture, and Computer Sciences
Howard University
Washington, DC 20059
(202) 806-6650
rjl@scs.howard.edu

Project Summary

The purpose of this project was to study the feasibility of reusing major components
of a software system that had been used to control the operations of a spacecraft
launched in the 1980s. The study was done in the context of a ground data

processing system that was to be rehosted from a large mainframe to an inexpensive
workstation. The study concluded that a systematic approach using inexpensive
tools could aid in the reengineeing process by identifying a set of certified reusable

components.

The study also developed procedures for determining duplicate versions of software,
which were created because of inadequate naming conventions. Such procedures
reduced reengineering costs by approximately 19.4 percent.

Introduction

The IMP-8 spacecraft is used to collect scientific data. It is so reliable that it is
used by NASA's Goddard Space Flight Center to calibrate instruments and data
transmission equipment for much newer spacecraft. IMP-8 is solar powered, has few
moving parts to wear out, and is expected to remain operational for many years. All data
transmission must be processed in real-time.

A spacecraft in orbit around the earth must transmit data to ground antennas or
relay systems. The position of the spacecraft can be determined exactly by knowing the
precise time and the orbit of the spacecraft. Because of the distances involved, extreme
accuracy is important in order to determine where cameras are pointing.

The relative position of the cameras, antennae and the body of the spacecraft are
essential to allow clear vision as the spacecraft rotates. This calculation is called "attitude
determination." Errors in orbit are detected by complex calculations using the known

positions of the Sun, Moon, several stars, and the planets; this is known as "ephemeris
information."

The cost of operating the spacecraft from the ground has become uneconomical in
recent years. The primary reasons are the need to maintain the mainframe computers

neededfor the initial, "front-end"processingandtheexpensivecollectionof tapedrives
andcontrollers.The mainframesandtapesareusedto processthedataobtainedfrom
relayantennas.Thedatacomesinto thesensordatacollectionareaelectronicallyusing
theInternetandftp.

Theprimarydatacollectionandstorageis donein two largeadjacentroomswith
raisedfloorsandhigh performanceair conditioning.Otherrelevantsitesarea control
centerwherecommandsaresentto theIMP-8 spacecraftto senddatato thedata
collectionareaandseveraloff-site locationswherescientistsanalyzethearchiveddata.
No changesin dataformatareallowedbecauseof theneedto processanalogdata.
Analogdatais to betransformedto digital,with severalqualitychecksandotherdata
operations.Otherchangesmaycall for thereplacementof reelsof tapewith otherunits.

Input dataisof two types:

1. McMurdo stationin AntarcticausestheInternetandftp to sendinput datain digital
format intoaPentium3processor.

2. Datafrom WallopsIslandandtwo othersourcesis sentto magnetictapeunits. This
isanalogdata.

A setof two IBM 3090s(1980stechnology)isusedto takeboth typesof dataandto
producetwo primaryactions:

Step1includespre-editprocessingto performapre-qualitycheckin which timing
informationis extractedandputontoatape,with thescienceinformationalso
extracted.

• In step2, datais arrangedinto chronologicalorder. Thedatais groupedinto4.333
"daygroups"andotherprocessingis done.

Most of thesoftwareis writtenin a combinationof FORTRAN andUnisys
assemblylanguage.TheFORTRANversionispre-FORTRAN77,andmayin factbeas
earlyasFORTRAN2.

Thecontrolcenteris 1970stechnologywith proprietaryhardwareandsoftware
drivingcomputerswith largescreenterminalsthatareessentiallycolor alphanumeric
displays. Thedatacommunicationsmodelis neitherTCP/IPnoraproprietaryNASA
protocolcalledNASCOM.

Currenttechnologyusesoneof two configurationsfor projectsof this
complexity,with UNIX workstationsfar morelikely to beused:

. HP workstations, HP-UX, Motif, ANSI C, TCP/IP, Berkeley UNIX sockets, Oracle
database, and other COTS products integrated with both reused and special-purpose
software.

2. Pentium PCs, ANSI C, TCP/IP, Oracle database, and other COTS products integrated

with both reused and special-purpose software.

The mainframe computers are 1970s vintage Unisys machines with an expensive

proprietary operating system that costs in excess of $200,000 per year in licensing fees.
This fee will be raised next year because the current fee is pro-rated across several
different projects also using this expensive proprietary operating system and these other

projects will either terminate or else switch to newer technology. The estimated licensing
and support cost is in the area of $500,000 annually. This is exclusive of operations.

Thereareapproximately25-30tapedrivesandcontrollers,eachof which is about
five feet highandoccupiesasquareof approximately2.5feetperside. Thetapedrives
accommodatelargereelsof ninetrackmagnetictapewith adensityof 6250bpi, aninter-
recordgapof 3/4", andareapproximately2000feetlong. Thetapesarecontrolledby
two IBM 3090mainframes,of 1980svintage. (Thetapebackupsystemwasupdated
fromtheoriginal system.)

Theamountof datathatcanbestoredon thetapeisdifficult to estimatebecauseit
dependsuponthesizeof a record. Theamountof datacannotbe largerthan
150,000,000bytespertapeandisprobablycloserto 120,000,000bytespertape.

Thebackuptapesarestoredin storagecasesthatareovertenfeetlongandsix
feetwide, with threeor four shelves.Thereareatleast8of thesecases. Theyarekept
in thesamevery largecomputeroperationsroomasthetapedrives. Operatorsareneed
to loadandremovetapesfrom theindividualtapedrives. Thereis notsufficientdisk
capacityto keepthecontentsof all thetapeson-line. Tapesarearchivedfor two years.

Not surprisingly,thereareoftenerrorson thetapescausedby degradationof the
magneticmediadueto abrasionandotherfactors.Reducingthehandlingof tapeis a
majorgoal.

Writing driversfor newerstoragedevicessuchas4 millimeter,8 millimeter,or
DAT cartridgesappearsto beanimpossibilitydueto theageof theoperatingsystemand
thelackof personnel.Theenormousyearlysoftwareandhardwaremaintenancecost
doesnot includefacilities for newsoftwaredevelopmentfor softwarethatis likely only
to haveasingleuser.

The Traditional Reengineering Approach

Because much of the original software development and software maintenance was
done by private contractors, it was initially decided to have the same contractor that
developed the software perform the reengineering. Of course most of the project
personnel had been reassigned or retired, so there was little institutional knowledge.
(Much of the maintenance had been done by a second contractor and there was some

knowledge of the source code.)
Since requirements, design, rationale, test plans, or discrepancy report data were not

available, the analysis focused on the source code.

The system consisted of 33 source code files, totaling 108161 lines, which were
grouped into 14 "programs." In modem terminology each "program" would represent
source code for distinct concurrent processes. It was difficult to determine which source
files were associated with which "programs." Only rudimentary naming conventions
were used, reflecting the state of software engineering at the time the software was
developed.

Most of these files contain both FORTRAN and Unisys assembly code. No attempt
was made to measure the size of the system in source lines of code of other (locally)
standardized measure.

In order to determine the cost of the reengineering effort, a decision was made to
reengineer one "program," accounting for approximately one fourteenth of the total
system size. The cost of this "program" was to be multiplied by 14 to obtain the cost of
reengineering the entire system.

The Reengineering Approach Used in This Project

The most important questions to ask during any reengineering effort are:

1. What software components should be reused?
2. Which software components should not be reused?
3. In what capacity are the components reused?
4. Which methods are likely to be successful at reengineering existing code?
5. What inexpensive tools are available reengineering?
6. What are the total life cycle costs of reengineering
7. How do these costs compare to new development?
8. Do the perceived benefits outweigh the cost?

The goal of the first phase of the reengineering effort was to understand the
software using publicly available software utilities. The intention was to determine the
amount of information that could be obtained from such utilities. Since no

documentation of the requirements, design, or rationale were available, the work focused
on the source code. The software was transferred electronically to a HP workstation

running HP-UX at Howard University.
The software consists of 33 files comprising 108,161 lines of combined

FORTRAN and Unisys assembly language. Most files contained both FORTRAN and
assembly code. No attempt was made to measure the size of the system in source lines of
code or other (locally) standardized measure.

Since the original source code files contained functions in multiple languages, we
used the UNIX csplit utility to separate the files. The csplit utility looks for a user-
defined delimiter (in this case the delimiter was ./ADD NAME=) and breaks each file

into separate files. The shell script was:

for i in *.SEQ
do

echo $i

csplit -k -f
done

$i $i '/ADD NAME/+1' '{99}'

This operation had to be performed twice because some of the delimiters had an extra
space between the 7' and the beginning of the word 'ADD.' The delimiter was removed
by using the UNIX sed text editing utility in the shell script

for i in *[0-9]
do

sed "i,i d"
done

$i > $i\.f

The final result of this sequence of splits was a set of 764 source code files, each with the
.f extension, regardless of whether they were FORTRAN or Unisys assembly files.

The UNIX wc utility was run on these 764 files to determine if there were any
files of exactly the same size. Such pairs were then compared using the diff utility to
determine if there were any duplications. We determined that 180, or 19.4 %, of the
functions being reengineered were duplicates, probably grouped because of the lack of

naming conventions and makefiles.
Of the remaining 584 source code files, 90 were rejected for reuse because they

were written in Unisys assembly language and would have to be rewritten entirely.
The next step was to certify the remaining 494 FORTRAN source code modules

as being correct enough to be potentially reusable. The modules were tested for several
potential problems each of which would render the module unsuitable for reuse:

• The code failed to compile using the portable gnu g77 compiler.

• TheMcCabecyclomaticcomplexitywasgreaterthan10. This is especiallyrelevant
becausethecurrentsoftwarestandardsandpracticesmanualrequiresonly branch
testing. We usedthefsca(FORTRANSourceCodeAnalyzer) previously developed
at Howard University [8].

• The interconnection from a function to others is "large." This metric was also
computed by the fsca tool.

• If the FORTRAN source code can be translated directly to C in order to use the code

on more modern computers.

The McCabe cyclomatic complexity was checked by using the UNIX awk utility
to determine which, if any, files exceeded the pre-set limit. The awk script was based on
an examination of the output of the fsca utility. The awk script was

if ($3 :: "CYCLOMATIC")

{

getline

getline

print $2

]

The flow of control was determined by the floppy and flow utility. These utilities
are robust in the sense that they ignores any foreign (e.g., Unisys assembly) code
encountered.

The data on the McCabe cyclomatic complexity, size of function interface, and
control flow information provide an assessment of the current state of the software. This
data can be compared to the result of reengineered software to determine if anything was
omitted in the reengineering effort.

Examples of the output of the fsca tool used for certification are shown below.
Several types of coupling [3] were calculated by the fsca tool [8], but only the total
amount of coupling was used.

module name: NORVEC

cyclomatic complexity:
lines of code: 18
of interconnections: 2

_...,._iI...

1 I FUNCTION NOT DEFINED IN SOURCE CODE

1 | INTRINSIC FUNCTION

module name: ENGCAL

cyclomatic complexity:
lines of code: 189
of interconnections: 6

57

ACSLOG FUNCTION NOT DEFINED IN SOURCE CODE

CALTAB 3 N N 14 7

OR

1INTERP

FUNCTION NOT DEFINED IN SOURCE CODE

N N 27 15 0

We found that 209 files exceeded the recommended limit of 10 for the McCabe

cyclomatic complexity. These functions are likely to require special testing efforts if they
are changed in any way. Indeed, the first rehosted "program" crashed on its first
execution because a new, previously untested execution path led to an uninitialized array
on the new host workstation. Even though the IMP-8 system runs essentially error-free
in the present hardware and software environment, individual modules clearly have to be
certified as correct before reuse. Any module having any of the above characteristics will
not be certified as error-free.

The analysis also determined that 2% of the functions in the system are of abnormal

length (functions with more than 500 lines of code), 4% utilize abnormal FORTRAN
semantics (columns 73-80), 25% contain assembly language code, and 6% have a very
large number of interconnections (functions which have greater than 10
interconnections).

New documentation was developed using the public domain tools floppy [4] and
flow [5] to obtain both graphical and textual representations of the detailed software
design. Floppy and flow are used in unison on FORTRAN programs to produce structural
flow graphs as well as metrics information on the number of source code lines and the
number of commented lines. Unfortunately, the number of commented lines may be

somewhat skewed because the floppy and flow consider any lines they cannot interpret to
be comment lines. A sample of the output from the flow tool is shown below.

Flow Diagram for ATTITUDE.SEQ

The documentation and metrics for the software provides a basis for comparison
to make sure that newly written or ported modules are functionally equivalent to the
original modules in their implementation details.

Domain Analysis

"Domain analysis is a generalization of systems analysis, in which the primary
objective is to identify the operations and objects needed to specify information
processing in a particular application domain. In addition, domain analysis will identify
precisely domains and software artifacts within these domains that are good candidates
for reuse." [7, pg. 35-36] We used a bottom-up approach using basic building blocks (a
faceted classification scheme) for domain analysis.

After careful evaluation of the code, it was decided that only the commented
regions of the code would be considered when looking for objects and verbs. The
commented regions contain a description of the function, the purpose of the function, the
English name of the function, methods of the function, modularity of the function
(coupling, cohesion), implementation notes for the function, variables used by the
function, calls made by the function, and which other functions call the function. By
utilizing this strategy, the amount of code to be considered was drastically reduced,
however, the domain analysis results were not greatly compromised because of the rich
content of the commented regions.

In some cases the function comments did not include all of the above information.

If that were the case, the contents of the particular function were examined to determine
the objects and actions.

A small program, 'comment.c' was written to pull out the commented regions as
well as other significant lines from each module in the source code and placed them in an
output file. Next, the output files containing the commented areas served as input to the
Concordance tool [2]. This tool, designed for the Macintosh, produced an index of all the
words contained in the input file along with the number of occurrences of each word and
the line numbers in the input file where the words are located. The generated index
expedited the domain analysis process by generating a word list which was used to
determine object, verb, and system agents. Approximate values for the possible reuse of
each file in the system were determined. We also used a software tool from the ASSET
library (source.asset.com) to create a "concordance," or cross-reference of the source
code by treating the embedded comments as a text document.

The Results of the Software Analysis

The software consists of 33 files comprising 108,161 lines of combined

FORTRAN and Unisys assembly language. Most files contained both FORTRAN and
assembly code. The original source code files contain 764 functions. Using the UNIX
wc and diff utilities indicate that there are 180 functions that are duplicated, with a total
of 20,333 lines that are duplicated. Thus the reengineering effort can be reduced by

approximately 19.4% over the cost of reengineering the entire project with no loss of
quality.

Of the 765 files, 209 exceed the recommended limit of 10 for the McCabe

cyclomatic complexity. These are likely to require special testing efforts. For example,
the following functions in the ATTITUDE.SEQ file require special attention:

function number McCabe cyclomatic complexity

6 25
9 16
10 55
11 29
18 13
20 44
21 17

We concludedthatapproximately60%of theIMP-8 systemis acandidatefor
reuse.Muchof thesoftwarecanbeusedasis, with extensivetestingof converted
FORTRANmodulesnecessaryfor thosewith largeinterfacesof highcyclomatic
complexity.

Lessons Learned About Reengineering Analysis

There were no similar systems located to assist in evaluating the reuse potential of
the IMP-8 software. Therefore, it was necessary to implement an original methodology

for performing the domain analysis, the metric analysis, the certification, the
reengineering and the economic analysis of the system.

There were several lessons learned throughout the analysis process. First, since
the functions of the system were large in number of lines of code, separating the

functions into smaller parts made analyzing the code much more manageable. This
separation allowed us to determine which files were duplicates. It is unlikely that these
duplicates would have been found without this separation. In addition, the separation
improved the efficiency of the code analysis tools used for program understanding,
because several of these tools could not be run on large source code files because of
memory constraints.

Second, in analyzing the data, no single public domain tool should relied upon,
due to the lack of testing that would be appropriate for a. All tools utilized for
conducting the analysis had to be used together. For example, the 'fsca' tool determined
the module calling tree which was similar to the results produced from the 'floppy' tool,
which produced a graphical module calling representation.

Third, there were several methodologies available to perform the above
mentioned analysis tasks. However, the simpler approach was always taken because it
would be easier to understand the results. Utilizing the bottom-up approach made

domain analysis easier since we were not familiar with the code.

Comparisons to a Traditional Reengineering Approach

The reengineering approaches suggested in [1], [7], [9], and [10] all focus on the
need to determine a correct view of the system being reengineered. Even though many

program understanding tools are limited, the use of tools is highly recommended as a
general practice. This is the most common approach to developing an abstract view of
the system, which is necessary if portions of the system are to be reengineered into new
systems with (at least) the same functionality.

In this project, the public domain floppy and flow tools were used for program
documentation, together with the locally-developed fsca tool for metrics. This provided
the high level view of the software system; obtaining this view is the first step in the
processes recommended in [1], [7], [9], and [10].

However, our approach used these tools for high level analysis only after the system
was decomposed into individual modules. We were able to reduce the cost of
reengineering the entire system by nearly 20 percent, by selecting this approach. The

same approach would be effective when reengineering any legacy system that was

developed before naming conventions were enforced. Such systems often have multiple

copies of the same functions embedded into larger source code files.

There is one final note on this approach. The reengineering process traditionally is

considered to be either a monolithic process, with an existing system as input and a

reengineered system as output or an incremental approach. Most reengineering processes

are tailored towards the monolithic approach. The separation process described here is

also appropriate for incremental approaches, with little overhead cost.

Appendix

A number of scripts including those below were written to facilitate the analysis.

SHELL SCRIPT FOR SYSTEM ANALYSIS (Script name: analysis)

echo "STARTING ANALYSIS FOR

mkdir $i

cp COPY/* $i

cd $i

for i in [A-Z]*

do

echo "Creating Directory

mkdir $i.DIR

mv $i $i.DIR/$i.SEQ

done

for i in *.DIR

do

cd $i

echo "DATA ANALYSIS FOR

$i">>$i.DOC

THE IMP-8 SYSTEM FILES..."

$i. DIR..."

echo "FILES\t\t\tSTART DATE\tFINISHED

DATE\t\tCOMMENTS">>$i.DOC

echo "

">>$i.DOC

for j

done

for j

done

cd ..

done

in *.SEQ

do

csplit -s

rm-f Sj

-k -f $j $j '/ADD NAME/+1'

in *[0-9]

do

mkdir $j.DIR

echo $j>>$i.DOC

floppy -t -cn $j>>$j.txt

flow -g $j.floptre>>$j.txtl

rm -f *.floptre *.flopold

mv $j* $j.DIR

mv flow.ps $j.DIR

'{99}'

SCRIPT TO COMPILE THE FORTRAN SOURCE CODE

for i in *.f

do

f77 -co172
done

$i

SCRIPT TO SEPARATE FORTRAN, ASSEMBLY, AND DOCUMENTATION

for i in *.DIR

do

cd $i

cp *.f REUSE/IMP8.18/FORTRANFILES/DISK

cp *.txt2 REUSE/IMP8.18/DOCUMENTATION

cp *.a REUSE/IMP8.18/ASSEMBLY

cd ../
done

References

1. Arnold, R. S. ,ed., Software Reengineering, IEEE Press, Los Alamitos, California,
1992.

2. Concordance Tool, www.sil.org/computing/conc/conc.html

3. Conte, S. D., Dunsmore, H. E., and V. Y. Shen, Software Engineering Metrics and

Models, Benjamin Cummings Publ., Menlo Park, California, 1986.

4. Floppy,nic. fonet, fi/pub/languages /fortran/f loppy7, tar. Z

5. Flow,nic. fonet, fi/pub/languages /fortran/f loppy7 flow3. tar. Z

6. IMP-8 description,http ://nssdc. gsfc. nasa. gov/ space/ imp- 8.html

7. Leach, R. J., Software Reuse: Methods, Models, Costs, McGraw-Hill, New York,
1997.

8. Leach, R. J., and D. M. Coleman, "A Software Metric for Logical Errors and
Integration Testing Effort," Proceedings of the Computer Assurance Conference,
COMPASS'97, Gaithersburg, Maryland, June 18-20, 1997.

9. Software Reengineering Analysis Handbook (SRAH), Hill Air Force Base,

http: //www. stsc.hill.af.mil/RENG.

I0. Wilkening, D. E., Loyall, J. P., Pitarys, M. J., and K. Littlejohn, " "A Reuse Approach
to Software Reengineering," J. Systems Software, Vol. 30., No. 1-2, July-August,
1995, pp. 117-125.

10

